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Abstract

Adaptive integration schemes for ODE systems typically function by adjusting the time step size so as to keep the trun-
cation error below some desired value. For adaptive integration of PDE systems involving coupled kinetic reaction and
diffusion operations, truncation error arises not only from the individual propagators but also from their method of cou-
pling. A common second-order accurate method for coupling operators is Strang’s method of operator splitting. We derive
an expression for the truncation error resulting from Strang splitting reaction and diffusion operators for an arbitrary num-
ber of spatial dimensions, and demonstrate its use in adaptive time step algorithms. In addition, we present explanations of
the second order implicit reaction and diffusion operators, and their individual error calculations used in our implemen-
tation of the scheme. Finally, using example simulations we discuss the use of this calculation for problems in systems
biology.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fully-adaptive time integration for multi-dimensional reaction–diffusion PDE problems requires more than
a simple error estimate from each integration operator at each time step. Truncation error can also arise from
the method in which the operators are applied. A popular second order method for combining operators, par-
ticularly in atmospheric science [1], is Strang’s method of operator splitting or ‘‘Strang splitting’’ [2–4]. In the
first part of this paper, we derive an expression for the truncation error resulting from Strang splitting reaction
and diffusion operators to form a second order integration scheme. We then present explanations of the spe-
cific implicit reaction and implicit diffusion operators used as well as their individual error calculations. The
method is implemented in CellSim [5], a PDE-based cell simulation software package developed by our group
and freely available under the GNU Public License [6]. Finally, we give examples of and discuss the use of this
calculation for problems in systems biology.
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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2. Strang splitting truncation error

We first derive an expression for the truncation error due to Strang splitting reaction and diffusion opera-
tors [1]. Our generalized system consists of a vector of chemical concentrations Cð~x; tÞ which evolve in time
and space according to specified differential equations
o

ot
Cð~x; tÞ ¼ F ðCð~x; tÞÞ ¼ F RðCð~x; tÞÞ þ F DðCð~x; tÞÞ; ð1Þ
where the expressions
F RðCð~x; tÞÞ ¼ RðCð~x; tÞÞ ¼
Xn

i¼0

ai

Ym
j¼0

½C jð~x; tÞ�bij

 !
; ai 2 R; bij 2 N0; ð2Þ

F DðCð~x; tÞÞ ¼ Dr2Cð~x; tÞ ð3Þ

are the source term vectors for chemical kinetics and for simple constant-rate diffusion, respectively. Kinetics
is composed of a sum over n terms, each of which is a product of a rate constant ai and concentrations from
amongst the system’s m reactants, and D is a diagonal matrix of diffusion constants. The exponent bij deter-
mines which reactants contribute to each term. Throughout the paper, we will assume that all operators pos-
sess both time and space dependence, and we will specify this dependence when required for clarity. The
function space S consists of all operators of interest that can act on C. For reaction–diffusion systems, this
consists of fI ; F R; F Dg and any linear combination of these.

Following the work of Lanser and Verwer [1] using Lie operator notation [7] adapted from Sanz-Serna and
Calvo [8,9], we start with a reaction–diffusion solution operator SðdtÞ for Eq. (1) that acts on a solution at time
t to give a solution at time t + dt,
Cðt þ dtÞ ¼ SðdtÞCðtÞ: ð4Þ

Let ~SðdtÞ denote a numerical approximation to SðdtÞ, such that ~Cðt þ dtÞ ¼ ~SðdtÞCðtÞ.

By combining the reaction and diffusion sub-operators using Strang splitting [2] and using the preferred
order of the stiff and non-stiff operators as outlined in [10,11] and further applied in [12,13], the solution oper-
ator becomes
~SðdtÞ � ~SR

dt
2

� �
~SDðdtÞ~SR

dt
2

� �
: ð5Þ
The truncation error associated with using the approximate solution operator from Eq. (5) can be found as
follows: For each operator Fi in our function space S, a Lie operator F i is associated. This linear operator
F i maps any operator G in S into the operator F i � G such that [8]
ðF i � GÞðCÞ ¼ F iðCÞ
o

oC
GðCÞ: ð6Þ
We will use this property to find a propagator for the problem at hand. Let Fi be the operator F ¼ o
ot defined by

the left-hand side of Eq. (1). Substituting F into the mapping of Eq. (6) yields
ðF � GÞðCÞ ¼ oC

ot
o

oC
GðCÞ; ð7Þ

¼ o

ot
GðCÞ: ð8Þ
Moreover, by recursively applying Eq. (6) using F we find
ðF k � GÞðCÞ ¼ ok

otk
GðCÞ: ð9Þ
Evaluating these derivatives at time t = 0 we find the Taylor expansion of G about time t,
X dtkF k

k!
� G

� �
CðtÞ ¼ ððedtF Þ � GÞCðtÞ: ð10Þ
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Of particular interest is the case of G = I, the identity operator. Substituting it in reveals
ððedtF Þ � IÞCðtÞ ¼ I þ dtF I þ dt2

2
F 2I þ � � �

� �
CðtÞ; ð11Þ

¼ 1þ dt
o

ot
þ dt2

2

o2

ot2
þ � � �

� �
CðtÞ; ð12Þ

¼ Cðt þ dtÞ; ð13Þ
thus propagating the system a step dt forward in time. It is critical to point out that the above procedure span-
ning Eqs. (7)–(13) applies for all operators in S, not just F ¼ o

ot. Consequently, as our Strang-split propagation
operator is actually a combination of sub-operators, this treatment applies such that
edt ~F � e
dt
2FR edtFD e

dt
2FR ; ð14Þ
where we have performed the above procedure three times, using the appropriate ordering of FR and FD, the
Lie operator representations of our reaction and diffusion operators, from the splitting scheme in Eq. (5). We
note that ~F represents a numerical approximation to F .

Since the reaction and diffusion operators do not in general commute, we make use of the BCH formula
[14–16] for gauging the splitting error. The BCH formula stipulates that an expression of linear operators
X and Y of the form eXeY can be written as eZ in terms of commutators, where
Z ¼ X þ Y þ 1

2
½X ; Y � þ 1

12
ð½X ; ½X ; Y �� þ ½Y ; ½Y ;X ��Þ þ 1

24
½X ; ½Y ; ½Y ;X ��� þ � � � ð15Þ
Applying this formula twice to Eq. (14) leads to an expression for the exponent:
~F ¼ FD þ FR þ
dt2

24
½FR; ½FD;FR�� þ

dt2

12
½FD; ½FD;FR�� þOðdt4Þ; ð16Þ
where we note that odd-ordered terms cancel. The second order and higher terms of Eq. (16) constitute the
error due to splitting the exact reaction and diffusion Lie operators FR and FD. What we are interested in
finding is a similar expression to Eq. (16) but in terms of the numerical operators FR and FD,
~o

ot
CðtÞ ¼ ~F ðCÞ � F RðCÞ þ F DðCÞ þ dt2EFðCÞ þOðdt4Þ; ð17Þ
thus EF will reveal the second order splitting error of the propagation operator from Eq. (14). To find this we
must first convert EF from an expression of Lie operators to an expression of numerical operators in S.

Eq. (6) reveals that a commutator of Lie operators ½F 1;F 2� is itself a Lie operator associated with a Lie–
Poisson bracket of F1 and F2,
½F 1;F 2�IðCÞ ¼ F 1ðCÞ
o

oC
F 2ðCÞ

o

oC
IðCÞ

� �
� F 2ðCÞ

o

oC
F 1ðCÞ

o

oC
IðCÞ

� �
; ð18Þ

¼ F 1ðCÞ
oF 2

oC
ðCÞ � F 2ðCÞ

oF 1

oC
ðCÞ; ð19Þ

¼ F 1ðCÞ; F 2ðCÞf g: ð20Þ
Expanding the nested commutators that appear in Eq. (16) reveals their form for numerical operators,
½F 1; ½F 2;F 3��IðCÞ ¼ fF 2ðCÞ; F 3ðCÞg0F 1ðCÞ � F 1ðCÞ0fF 2ðCÞ; F 3ðCÞg; ð21Þ
where the primes signify partial differentiation with respect to C.
To find the term EF, replace the two nested commutators in Eq. (16) with their corresponding expressions

of Eq. (21). Doing so reveals
~o
CðtÞ ¼ ~F ðCÞ � F RðCÞ þ F DðCÞ þ dt2 1

F 0DRðF R þ 2F DÞ � ðF 0R þ 2F 0DÞF DR

� �
þOðdt4Þ; ð22Þ
ot 24
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where
F DR ¼ F 0RF D � F 0DF R ð23Þ

is the Lie–Poisson bracket from Eq. (18). Eq. (22) contains the original components of Eq. (1) plus terms
describing the splitting error and leads to the following expression for EF:
EF ¼
1

24
½F 0DRðF R þ 2F DÞ � ðF 0R þ 2F 0DÞF DR�: ð24Þ
Substituting into this using Eqs. (2), (3), and (23), we arrive at
EF ¼
1

24
½ðR0ðCÞDr2ðCÞ � ðDr2ðCÞÞ0RðCÞÞ0ðRðCÞ þ 2Dr2ðCÞÞ � ðRðCÞ þ 2Dr2ðCÞÞ0ðR0ðCÞDr2ðCÞ

� ðDr2ðCÞÞ0RðCÞÞ�: ð25Þ
For all linear operators Fl 2 S with any operator Fi 2 S the following property holds:
F 0lðCÞF iðCÞ � F lðF iðCÞÞ: ð26Þ
Applying this to Eq. (25), the term (D$2(C)) 0R(C) becomes D$2(R(C)). Expanding out the braced expression
leads to
DR0ðCÞr2C �Dðr2ðCÞÞ0RðCÞ
¼ DR0 � ðC xx þ C yy þ C zzÞ �D ~r � ð̂iðR0C x þ RxÞ þ ĵðR0C y þ RyÞ þ k̂ðR0C z þ RzÞÞ; ð27Þ
¼ DR0 � ðC xx þ C yy þ C zzÞ �DR0 � ðC xx þ C yy þ C zzÞ �DR00 � ðC xC x þ C yC y þ C zC zÞ
� 2DðR0xC x þ R0yC y þ R0zC zÞ �DðRxx þ Ryy þ RzzÞ; ð28Þ
where for simplicity, we no longer explicitly write R’s dependency on C. After canceling terms, Eq. (27) can be
incorporated into the expanded expression for Eq. (24).
EF ¼
�D

24
½ðR00 � ðC xC x þ C yC y þ C zC zÞ þ 2ðR0xC x þ R0yC y þ R0zC zÞ þ ðRxx þ Ryy þ RzzÞÞ0ðRþ 2Dr2ðCÞÞ

� ðRþ 2Dr2ðCÞÞ0ðR00 � ðC xC x þ C yC y þ C zC zÞ þ 2ðR0xC x þ R0yC y þ R0zC zÞ þ ðRxx þ Ryy þ RzzÞÞ�:
ð29Þ
The terms Cx, Rxx, etc., represent first and second spatial derivatives taken in the direction of the subscripts.
Expanding the first line of Eq. (29) and applying Eq. (26) for the underlined term in Eq. (29) produces
EF ¼
�D

24
½ðR000 � ðC xC x þ C yC y þ C zC zÞ þ 2ðR00x C x þ R00y C y þ R00z C zÞ þ ðR0xx þ R0yy þ R0zzÞÞðRþ 2Dr2CÞ

� ðR0 þ 2Dr2ÞðR00 � ðC xC x þ C yC y þ C zC zÞ þ 2ðR0xC x þ R0yC y þ R0zC zÞ þ ðRxx þ Ryy þ RzzÞÞ�: ð30Þ
Eq. (30) is the general form for EF. For typical simulation geometries, most neighboring grid points will con-
tain the same set of compartments and by extension share the same reaction set. For these homogeneous grid
areas, the splitting error can be significantly simplified with spatial derivatives of the reaction operators falling
out. Accounting for this yields
EFh ¼
�D

24
½ðR000 � ðC xC x þ C yC y þ C zC zÞÞðRþ 2Dr2ðCÞÞ � ðR0 þ 2Dr2ÞðR00 � ðC xC x þ C yC y þ C zC zÞÞ�:

ð31Þ

Further reduction of the expression can be achieved for most biological systems as reactions are typically
first and second order. In such cases, R00 will be a constant and R000 will fall out of the equations entirely,
yielding
EF
h;2nd
¼ D

24
ðR0 þ 2Dr2ÞðR00 � ðC xC x þ C yC y þ C zC zÞÞ: ð32Þ
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One approach to the evaluation of Eq. (30) would be to expand out its second line by evaluating $2 across the
terms analytically and then numerically calculating the result. It is however more efficient to evaluate the final
group of terms at each spatial grid point and subsequently calculate $2 of the values numerically.

As dt2EF has units of lM/s, we take the value of dt3EF as our truncation error estimate in units of concen-
tration. It is this error estimate, along with those of the reaction and diffusion operators that allow for a full
estimation of the numerical error for the propagator over a time step dt.

For stiff systems, Press et al. [17] recommend using a relative error above a given threshold concentration
value and an absolute error below. We adopt their recommended scaling of max(|C|, s), and so error values
presented in this paper should be interpreted as the maximum non-negligible error values used to determine
system evolution. Therefore, units for truncation error values will not be specified. The value s is determined
by the characteristic scale of the system’s concentration values, and we set s = 1 for all simulations presented
in this paper.

As biochemical reactions are rarely more than bimolecular, Eq. (32) is often the case for systems of equa-
tions modeling homogeneous components of biochemical processes. For the purposes of implementation we
have kept the generalized form (Eq. (30)) and exploit the sparsity of the high order terms for computational
efficiency.

For example, in one dimension the vector term R00Cx Cx may be written component-wise as
ðR00C xC xÞðiÞ ¼
X

j;k

o2RðiÞ

oC ðjÞoC ðkÞ
C ðjÞx C ðkÞx : ð33Þ
This term may be evaluated efficiently by only summing over nonzero o2RðiÞ

oCðjÞoC ðkÞ
.

Similarly, one may efficiently evaluate R000C xC xðRþ 2Dr2CÞ component-wise using
ðR000C xC xðRþ 2Dr2CÞÞðiÞ ¼
X
j;k;l

o3RðiÞ

oC ðjÞoC ðkÞoC ðlÞ
C ðjÞx C ðkÞx ðRðlÞ þ 2Dr2C ðlÞÞ: ð34Þ
This sum is evaluated over terms that are third order or higher, and while it would seem that for a system of
100 reactants Eq. (34) would require a sum over 1003 iterations, R000 is generally very sparse, if not entirely
empty, reducing its cost of calculation considerably.

3. Boundaries and inhomogeneity

In biological cell simulations, the full expression of Eq. (30) is required in regions where cell compartments
border or overlap. At these locations, specific elements of R may differ due to the differing sets of reactions
that take place in the various compartments. Because we need partial derivatives of R, we cannot simply
numerically difference values of RðCð~x; tÞ;~xÞ. Instead we must determine new reaction sets for spatial deriva-
tives of R at these locations.

Consider a three-point quadratic interpolation of R over the evenly spaced grid points x0, x1, and x2. The
one-dimensional interpolation is expressed as follows:
RðCðxÞ; xÞ ¼ RðCðx0Þ; x0Þ þ ðRðCðx1Þ; x1Þ � RðCðx0Þ; x0ÞÞ
x� x0

Dx

� �
þ RðCðx2Þ; x2Þ � 2RðCðx1Þ; x1Þ þ RðCðx0Þ; x0Þ

2

x� x0

Dx

� � x� x1

Dx

� �
: ð35Þ
Taking the first centered partial derivative with respect to x, oR
oxjx1

yields the expression
oR
ox

����
x1

¼ RðCðx1Þ; x2Þ � RðCðx1Þ; x0Þ
2Dx

: ð36Þ
The second derivative is
o2R
ox2

����
x1

¼ RðCðx1Þ; x2Þ � 2RðCðx1Þ; x1Þ þ RðCðx1Þ; x0Þ
Dx2

: ð37Þ
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The inhomogeneous equations (36) and (37) can be predetermined and then evaluated in the same manner as
the standard reaction operator equations.

4. Reaction and diffusion truncation error estimates

In addition to the splitting error calculation, a fully adaptive integration scheme must also be able to deter-
mine error estimates for the reaction and diffusion operators. For completeness, we present brief explanations
of how we determine truncation error estimates for the two operators as well as present explanations of the
methods themselves.

4.1. Evaluation of the error for the diffusion propagator

For propagating the diffusion operator we use an ADI method introduced by Douglas [18,19]. The method
easily generalizes to problems of arbitrary dimensionality and is well-suited to our intracellular diffusion prob-
lem. In three dimensions it may be written as
c� � cn

Dt
¼ a

2
d2

xðc� � cnÞ þ ad2
y cn þ ad2

z cn; ð38Þ
c�� � cn

Dt
¼ a

2
d2

xðc� � cnÞ þ
a
2
d2

yðc�� � cnÞ þ ad2
z cn; ð39Þ

cnþ1 � cn

Dt
¼ a

2
d2

xðc� � cnÞ þ
a
2
d2

yðc�� � cnÞ þ
a
2
d2

z ðcnþ1 � cnÞ; ð40Þ
where a ¼ D
Dx2 and d2

x is a tridiagonal matrix representing 1D diffusion along a strip of space in the direction of
the subscript. The concentration vector c is a vector whose elements are concentrations of a single reactant at
successive locations along the grid strip. For a strip in the x direction having periodic boundary conditions, the
matrix d2

x is of the form
�2 1 0 0 � � � 0 0 0 1

1 �2 1 0 � � � 0 0 0 0

. .
.

0 0 0 0 � � � 0 1 �2 1

1 0 0 0 � � � 0 0 1 �2

2
6666664

3
7777775
:

Notice that due to periodic boundaries the upper right and lower left corner matrix elements are non-zero, and
so will require cyclic tridiagonal solving methods [17].

We can somewhat simplify the above ADI equations by subtracting Eq. (38) from Eq. (39), and Eq. (39)
from Eq. (40) and then defining a = adt. After doing so, we are left with the following reduced equations:
1� a
2
d2

x

� �
c� ¼ 1þ a

2
d2

x þ ad2
y þ ad2

z

� �
cn; ð41Þ

1� a
2
d2

y

� �
c�� ¼ c� � a

2
d2

y cn; ð42Þ

1� a
2
d2

z

� �
cnþ1 ¼ c�� � a

2
d2

z cn; ð43Þ
or in the generalized form for an N dimensional system,
1� a
2
d2

1

� �
c�1 ¼ 1þ a

2
d2

1 þ
XN

i¼2

ad2
i

 !
cn; ð44Þ

1� a
2
d2

i

� �
c�i ¼ c�i�1 �

a
2
d2

i cn for i ¼ 2 . . . N ; ð45Þ

cnþ1 ¼ c�N : ð46Þ

In one dimension, this is simply the Crank–Nicolson differencing scheme [20]. In three dimensions, determin-
ing cn+1 consists of evaluating three tridiagonal linear equations, each an OðnÞ operation. As the left-hand side
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matrices ð1� a
2
d2Þ possess strict diagonal dominance, they are necessarily non-singular [21,22]. In our own

implementation in Cellsim, we make generous use of the Gnu Scientific Libraries for quickly solving these tri-
diagonal and other linear algebra problems. For both zero flux and periodic boundary conditions, no special
treatment is required at the boundaries when calculating the intermediate values, c* and c**.

To estimate the truncation error of the method we first notice that the right side of Eq. (41) contains all the
required elements of the first-order FTCS diffusion scheme [17,23], which in three dimensions appears as
ĉnþ1 ¼ ð1þ ad2
x þ ad2

y þ ad2
z Þcn: ð47Þ
Therefore, the second order ADI method contains an embedded first order FTCS method that can be used for
a simple truncation error estimate:
DD ¼ cnþ1 � ĉnþ1: ð48Þ

The maximum valued element of the vector DD is taken as the truncation error estimate for a single time step
diffusion propagation.

4.2. Evaluation of the error for the reaction propagator

For propagating chemical kinetics, we employ a Rosenbrock method [17]. Such methods have the general
form
Cnþ1 ¼ Cn þ
Xs

i¼1

biki; ð49Þ

ki ¼ dtF R Cn þ
Xi�1

j¼1

aijkj

 !
þ dtJ

Xi

j¼1

cijkj; ð50Þ
where aij, bi, and cij are constants, and J is the Jacobian matrix of the chemical kinetics whose elements

J ij ¼ oF RðC iÞ
oC j

. We employ the second order method developed in [24]. The method is written as
Cnþ1 ¼ Cn þ
3

2
dtk1 þ

1

2
dtk2;

I � cdtJð Þk1 ¼ F RðCnÞ;
I � cdtJð Þk2 ¼ F RðCn þ dtk1Þ � 2k1;

ð51Þ
where cij ¼ c ¼ 1� 1=
ffiffiffi
2
p

is chosen for desired stability properties. Further details can be found in [24]. The
method contains an embedded first-order method giving an approximate solution of
Ĉnþ1 ¼ Cn þ dtk1: ð52Þ

Again, subtracting the first-order solution, Eq. (52), from the second order solution, Eq. (51), yields a trun-
cation error estimate of DR � Cnþ1 � Ĉnþ1 ¼ dt

2
k1 þ dt

2
k2. We use the maximum valued element of the vector

DR as the truncation error estimate for a single time step reaction propagation.

5. The integration scheme

Depending upon the model system being integrated, any of the three sources previously described (reaction,
diffusion, and Strang splitting) may contribute to the truncation error. Monitoring all three affords one the
most information when adjusting the time step during adaptive integration. If any single source’s truncation
error is above a maximum tolerance Dmax for that source, the error can be reduced to an acceptable value by
shrinking the time step value. Correspondingly, if all three truncation errors are below their tolerances, the
time step can be increased to improve efficiency for a given desired accuracy. This is the basic approach of
our integration scheme.

First, since the splitting calculation is explicit, the truncation error due to splitting can be determined with-
out the need to take the step first. Accordingly our integration scheme checks the splitting error first. If this
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error surpasses the splitting tolerance, the time step dt is reduced to the maximum value allowed by the tol-
erance. This can be done without the need to recalculate the splitting error using the smaller step size because
the splitting error is directly proportional to dt3. So, if we calculate a splitting error value of Dfail which turns
out to be larger than the error tolerance Dmax, we need only reduce the step size by a factor of ðDmax=DfailÞ

1
3 to

find a time step that will result in a splitting error equal to the tolerance. If, on the other hand, the error is less
than the tolerance, no adjustment to dt is made.

After determining the splitting error, the system is propagated forward in time an amount dt/2 by the reac-
tion operator FR. If the step fails the tolerance test, the time step size is reduced and the step is re-taken until
the tolerance test is passed. If the step passes the tolerance test, then the value of the next time step (dt 0) is
increased and dt is left unchanged.

After this, the system is propagated forward in time an amount dt by the diffusion operator FD. If the
step fails the tolerance test, then the time step size is reduced, the partly taken integration step is aban-
doned, and the entire step is restarted with the reaction propagation. If the diffusion propagation passes
Fig. 1. Algorithm flowchart for a single time step dt. The method consists of four steps: 1. Determine the Strang splitting error and adjust
the time step, if needed. 2. Propagate the reaction operator a half time step. 3. Propagate the diffusion operator a full time step. 4.
Propagate the reaction operator a half time step. The method checks to see if each error estimate is below the maximum tolerance set for its
corresponding propagator. The time step choice dt is considered successful if all error estimates pass this check.
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the tolerance test, then the system is propagated forward in time a final half time step dt/2 by FR. Finally,
the value for the next time step is set to the saved value dt 0. A flow chart depicting this algorithm can be
found in Fig. 1.

6. Example systems

We now examine three example systems that individually demonstrate system evolution dominated by trun-
cation error from each of the three sources. For the reaction error dominated system, we use a simple auto-
catalytic system diffusing through a medium with two slowly diffusing reactants A and B that react quickly to
form a dimer. For the diffusion error dominated system, we use a similar system with different time scales for
reaction and diffusion constants. For the splitting error dominated system we use a simple simulation of a
kinase/phosphatase cascade, activated by a membrane-bound receptor/stimulus complex on a compartmental-
ized grid. All simulations are integrated using CellSim [5].

As a check for the accuracy of the method, we also integrate out each system using an explicit fourth-order
Runge–Kutta (RK4) method and FTCS diffusion with a small fixed time step (10�5 s for the two auto-catalytic
systems and 10�3 s for the kinase cascade system), an accurate but computationally costly method. We plot the
maximum concentration difference between the two methods at each time step as cumulative error calcula-
tions. Since the time points of the two methods do not identically match, we use simple linear interpolation
of the RK4 data to determine appropriate values. We provide these values for the first 100 seconds of each
simulation, approaching steady state concentrations in all cases. Computational storage and time constraints
prevented us from integrating the RK4 simulations out further.

6.1. Diffusion error dominated system

Diffusion error dominated dynamics are characterized by fast diffusion constants compared to other system
rate parameters. In our example of a diffusion error dominated system, we start with a 100 · 100 square grid of
width 2 lm, with an initial Gaussian distribution of the reactants. The relative concentrations of the reactants
do not match their kinetic equilibrium concentrations, and the boundary conditions are periodic. The sole
kinetic reaction is
Aþ B ¢ 2A; ð53Þ
where the forward rate constant is 0.001 (lM s)�1, the backward rate is 0.0001 (lM s)�1, and the diffusion
constant for both reactants is 5.0 lm2/s. This leads to the reaction and diffusion operators for this system:
F R ¼
0:001½A�½B� � 0:0001½A�½A�
0:0001½A�½A� � 0:001½A�½B�


 �
; ð54Þ

F D ¼ 5:0r2 ½A�
½B�


 �
: ð55Þ
Initial conditions are
Aðx; yÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
e�

x2þy2

2r2 ; ð56Þ

Bðx; yÞ ¼ 2Aðx; yÞ; ð57Þ

where r = 0.205, and the origin is at the center of the grid. This 2D system is integrated out from time t0 = 0 s
to time t = 1000 s using the adaptive integration algorithm presented earlier in this paper (Fig. 1). The max-
imum allowed error for each source of error is Dmax = 0.001.

The initial dynamics of the reactants can be seen in the first two rows of Fig. 2. Shown are the concentration
profiles after the first step (t1 = 0.000125 s), after the initial Gaussians have diffused to approximately half
their initial height (t2 = 0.00342 s), and after they have diffused to uniform distributions (t3 = 0.0995 s). From
this point the uniformly distributed reactants rise/fall to steady-state reaction values. Note that the legend
scales are different for all rows in these image collages.



Fig. 2. Detailed concentration and truncation error profiles of the diffusion error dominated system during the initial 0.1 s of simulation.
During this initial period the Gaussian distributions of the reactants A and B quickly diffuse out to uniform distributions over the grid. The
three columns of images correspond to the simulation times t1 = 0.000125 s, t2 = 0.00342 s and t3 = 0.0995 s. The top two rows show the
time evolution of the reactants A and B (in lM concentration), and the bottom three rows show the pointwise maximum truncation error
profiles due to diffusion, reaction, and Strang splitting.
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The lower three rows of Fig. 2 show the maximum error values over the grids for the three sources of error –
diffusion, reaction, and Strang splitting. For time t1 = 0.000125 s, the diffusion error plot contains three points
of interest – a central peak corresponding to the central concentration peaks, an inner ring corresponding to
the bottom edge of the concentration Gaussian, and a less pronounced third outer ring corresponding to the
area just outside the concentration Gaussian. The central peak of truncation error arises simply due to the
central curvature of the concentration distribution. The inner and outer truncation error rings correspond
to the areas approaching the edge of the concentration Gaussian – from both the zero gradient outside area
and the constant gradient slope of the Gaussian. As the concentration Gaussians spread out, these diffusion
error rings move radially as well, as shown for time t2 = 0.00342 s. By time t3 = 0.0995 s, each Gaussian has
spread out enough to completely fill the grid. The outer error ring disappears, and the inner ring diameter con-
tinues to grow larger than the grid width, causing the four peaks in the grid corners, constituting a single peak
wrapped around the periodic boundary edge.

At this point, the initial Gaussian concentration distributions have diffused to a uniform distribution over
the grid. This lack of strong curvature for concentration causes the diffusion error to drop drastically for small
time steps. In Fig. 3, the system diffusion error remains pinned just under the maximum allowed error until
around t = 0.1 s. At this point the reactant concentrations have become uniform over the grid, which causes
the diffusion error to drop several orders of magnitude (from 10�3 to 10�6). From this point on, all three
sources of error are below the maximum allowed error, and so the adaptive algorithm gradually increases
the system time step dt. As the errors do not reach the maximum allowed error until the very end of the
run as seen in Fig. 4, dt is increased exponentially from a time step of dt � 0.1 at time t = 0.1 s to a time step
of dt � 500 s at time t = 1000 s (Fig. 4). Only with such large time steps does the diffusion error re-approach
the maximum allowed error at this later stage of the simulation.

The reaction error and splitting error do not play a major role in the early stages of the system evolu-
tion, and remain several orders of magnitude below the system dominating diffusion error up to time
t = 0.1 s, as seen in the bottom two rows of Fig. 2 and in Fig. 3. At time t = 0.1 s the reaction error does
not fall off as does the diffusion and splitting error. This is because the reaction error is most sensitive to
kinetic rates and concentration values rather than spatial gradients. The reaction error instead increases
exponentially along with dt, though it still remains more than two orders of magnitude smaller than the
diffusion error.

The cumulative error for the diffusion dominant system remains low throughout the simulation, ranging
between 4.11 · 10�4 lM and 1.31 · 10�5 lM until a uniform reactant distribution is reached around
t = 0.1 s, at which point the cumulative error drops significantly (Fig. 3).

6.2. Reaction error dominated system

For a reaction error dominated example, we start with the same two Gaussian distributions of A and B
reacting to form 2A in an autocatalytic reaction. The grid geometry and initial concentration distributions also
remain the same. The forward and backward kinetic rate constants are changed to 1 (lM s)�1 and
0.1 (lM s)�1, respectively. The diffusion constant for both reactants is set to 0.001 lm2/s and Dmax = 0.001.
The reaction and diffusion operators for this system become:
F R ¼
½A�½B� � 0:1½A�½A�
0:1½A�½A� � ½A�½B�


 �
ð58Þ

F D ¼ 0:001r2 ½A�
½B�


 �
: ð59Þ
The time scale of the reaction operator is now much smaller than the diffusion operator.
In Fig. 5 we examine a series of reactant concentrations and maximum truncation errors over the grid dur-

ing the initial stages of system evolution – the early reaction error dominated period from time t = 0 s to time
t � 3 s. Fig. 6 shows the same concentrations and errors during the later, diffusion error dominated stages of
system evolution. As the reaction kinetics reach steady-state values, the reaction error no longer dominates
and the system integration evolves at a faster rate that allows the slower diffusion to dominate.
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Fig. 3. Maximal truncation error estimates (bottom) and cumulative errors (top) for the diffusion error dominated system. After 0.1 s, the
reactants A and B are uniformly distributed over the grid, resulting in reduced truncation error estimates for small time steps. The
cumulative error also drops at this point, as the system reaches steady state.
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In Fig. 5, we see that the enzymatic reaction kinetics initially dominate, rapidly converting B into A

(t1 = 0.001 s to t2 = 0.227 s). This increases the height of A’s Gaussian distribution and creates a depres-
sion at the center of B’s distribution (t3 = 0.676 s). At time t4 = 2.776 s in Fig. 6, the ‘‘shoulders’’ of B’s
distribution (t4 = 2.776 s) are reduced to reach a final Gaussian distribution at kinetic equilibrium
(t5 = 15.064 s).
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Fig. 4. Evolution of the time step dt for the diffusion error dominated system.
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Eventually, near time t6 = 918.65 s, the reactants have diffused uniformly over the grid to steady-state con-
centrations, which allows for exponential growth of the time step value. As seen in Fig. 8, dt grows over the
full extent of the simulation from an initial time step of 10�3 s to final steps of over 1000 s.

As for the truncation errors, during the first second of integration the reaction error plays a larger role in
the system evolution than the diffusion error and splitting error, though the latter two rise in tandem
(Fig. 7). At time t2 = 0.227 s, the reaction error peaks just under the maximum allowed error and then
begins decreasing exponentially in three stages: from t � 0.2 s to t � 1.5 s after it has been overtaken by
the diffusion error, from t � 1.5 s to t � 100 s, and from t � 100 s to t � 200 s. After the diffusion/reaction
crossover around time t � 1.5 s, the splitting error falls in tandem with the falling reaction error. Beyond
t � 200 s, both reaction and splitting error remain at low values approaching the lower limit of double
precision.

During the drop in the reaction error and splitting error, the diffusion error dominates from time
t4 = 2.776 s to time t6 = 918.65 s, with the maximum diffusion error hovering just under the maximum allowed
error value (Fig. 7). After this point the uniform reactant distributions greatly reduce the diffusion truncation
error for small time steps, and so the diffusion error drops two orders of magnitude before the increased time
step sizes level the diffusion error magnitude at the end of the simulation. Because of the limited time span of
the simulation, truncation error values do not re-approach the maximum allowed value.

Similarities can be seen between the time step evolution and truncation error evolution of the reaction and
diffusion error dominated system simulations in their later periods. As seen in Figs. 3 and 7, after the reactants
reach uniform distribution, the diffusion error drops by multiple orders of magnitude. This allows dt to grow
exponentially until errors re-approach specified limits as seen in Figs. 4 and 8.

The similarities can be further illuminated by comparing Figs. 2 and 6. Differences between the two sets of
images can largely be attributed to the ‘‘shoulder’’ of B’s distribution in Fig. 6. For instance, the additional
rings present in the diffusion error of the reaction-dominated system (third row in Fig. 6) can be attributed
to this. Once the reactants reach kinetic equilibrium around t � 15 s, the diffusion error evolves quite similarly
to that of the diffusion error dominated system, only at a slower time scale. Conversely, the reaction and split-
ting error profiles evolve differently between the two simulations. In the diffusion error dominated system, the
reactants have not reached kinetic equilibrium by the time diffusive equilibrium is reached, so reaction error



Fig. 5. Detailed concentration and truncation error profiles of the reaction error dominated system during the initial 0.676 s of simulation.
During this initial period the Gaussian distributions of the reactants A and B react quickly to increase the concentration of A and reduce
the concentration of B. The three columns of images correspond to the simulation times t1 = 0.0001 s, t2 = 0.227 s and t3 = 0.676 s. The
top two rows show the time evolution of the reactants A and B (in lM concentration), and the bottom three rows show the maximum
pointwise truncation error profiles due to diffusion, reaction, and Strang splitting.
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Fig. 6. Detailed concentration and truncation error profiles of the reaction error dominated system during the later, diffusion error
dominated stages of simulation. During this period the reactants A and B slowly diffuse to a uniform distribution over the grid. The three
columns of images correspond to the simulation times t4 = 2.776 s, t5 = 15.064 s and t6 = 918.65 s. The top two rows show the time
evolution of the reactants A and B (in lM concentration), and the bottom three rows show the maximum pointwise truncation error
profiles due to diffusion, reaction, and Strang splitting.
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Fig. 7. Truncation error estimates (bottom) and cumulative errors (top) in an initially reaction error dominated system. The reactants A

and B quickly reach kinetic reaction steady-state values at time t � 15 s, by which point the system has become diffusion error dominated.
By time t = 1000 s, the reactants have been uniformly distributed over the grid.

1524 D.J. Miller, A. Ghosh / Journal of Computational Physics 226 (2007) 1509–1531
values do not fall as they do in the reaction error dominated system. Because the splitting error is affected by
both reaction and diffusion terms, it also is dissimilar between the two simulations.

Again, the cumulative error for the reaction dominant system remains low throughout the simulation, rang-
ing between 1.11 · 10�3 lM and 5 · 10�6 lM for the first 100 seconds of simulation (Fig. 7). The initial peak
in the cumulative error corresponds to the initial fast reaction-dominated dynamics of the system evolution
and is mirrored by a less pronounced peak in the reaction truncation error estimate.
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Fig. 8. Evolution of the time step dt for the reaction error dominated system.
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6.3. Strang splitting error dominated system

As an example of a system dominated by Strang splitting error, we model a kinase/phosphatase cascade
activated by an extracellular stimulus [25]. In our simulation, an extracellular ligand S binds to a transmem-
brane receptor R, which activates a cytosolic kinase K near the membrane. This activated kinase K* is free to
diffuse within the cytoplasm and undergo dephosphorylation by a phosphatase P. The system equations are as
follows:
Reac

S þ R

S:Rþ
S:R:K

K� þ
K�:P
tion kf kb

¢ S:R 4:2 0:25

K ¢ S:R:K 1:2 0:8

! K� þ S:R 0:2

P ¢ K�:P 1:98 25

! K þ P 6
with appropriate units of micromolar concentration and seconds. The initial concentrations of the reactants
are
S
 0.001 lM

R
 1.6667 lM

K
 0.2 lM

P
 0.224 lM
All other concentrations are initially zero, and the stimulus concentration S is held constant. All parameter
values are adapted from the MAPK kinase cascade in [26].

The simulation is run on a 100 · 100 point square grid of total width 5 lm. We model the cell as a circular
region whose radius extends to the edge of the grid. The outer grid points of the circular region form the cell



Fig. 9. Activated kinase (K*) concentration and truncation errors for the Strang splitting error dominated system. The distribution of K*

rises to a steady state by time t3 = 100 s. The splitting error immediately increases during the initial time steps until it peaks at the
maximum allowed value of Dmax = 10�5. The splitting and diffusion errors are most prominent near the membrane region of the cell.
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membrane region. The extracellular region overlaps with the membrane region and extends to the grid edge.
The cytosolic region also overlaps with the membrane region and extend into and fills the cell center. The
receptor R and all its complexes exist in and are free to diffuse among grid points containing the membrane
compartment. The stimulus S exists in extracellular grid points, and reactants K, K*, K*.P, and P all exist in
the cytosol. The diffusion constant for all reactants is 1 lm2/s. This system is integrated from time t = 0 out to
time t = 200 s using our adaptive integrator with a tolerance of Dmax = 10�5 for all three sources of error.
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Fig. 10. Truncation error estimates and cumulative errors of the Strang splitting error dominated system. The diffusion error rapidly
approaches the splitting error initially, then levels at 0.76 of the maximum allowed value.
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We chose this system not only to more directly show the algorithm’s applications to problems encountered
in systems biology, but also to demonstrate how splitting errors can dominate for compartmentalized, heter-
ogeneous systems of nonlinear reactions. Such systems often occur for spatiotemporal cell signal transduction
simulations, where the system reactants (proteins, small molecules, ions, etc.) are kept separate by compart-
ment borders and cell geometry.
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As seen in Fig. 9, K* concentration rises to a steady state of 0.0853 nM at the cell edge which decays expo-
nentially inward to a central concentration of 0.075 nM. Almost immediately (t1 = 0.071 s, first column of
Fig. 9), the splitting error dominates the system evolution. The error is most prominent at the interface
between the extracellular and membrane compartments located at the outer edges of the cell. After sufficient
accumulation of S.R in the membrane, splitting error increases at the interface between the membrane and
cytosolic compartments located at the internal edges of the cell, eventually overtaking the outer-edge splitting
error at time t2 = 8.327 s (Fig. 9, second column). The splitting error at the outer edge reduces slightly by time
t3 = 100 s and the system reaches steady state (Fig. 9, third column).

In Fig. 9, the reaction error (third row) quickly reaches a peak value at t1, which then reduces to the dis-
tributions seen at times t2 and t3. The diffusion error distribution (second row) mimics that of the splitting
error and gradually increases in value up to a maximum of 7.63 · 10�6 at time t2, just below the allowed
tolerance.

As seen in Fig. 10, for the vast majority of integration time, the splitting error is at the maximum allowed
value. At steady state the diffusion error is three-quarters of this value and the reaction error is 5 orders of
magnitude smaller. Therefore, the splitting error determines the time step evolution plotted in Fig. 11. During
the initial integration steps, the time step size increases exponentially until the splitting error reaches the max-
imum allowed value at time t � 0.03. From here the time step size increases more slowly until time t2 = 8.327 s.
From this time on through the remainder of the simulation, the time step size does not significantly change.

Of the seven reactants present in the simulation, it is inactive K that produces the greatest splitting error
throughout the simulation. This is localized at the cell membrane where K partakes in the most reactions,
involving S.R, S.R.K, and K*.P simultaneously. It is interesting to note that the splitting error for the reactants
S, R, S.R and S.R.K quickly drop off to negligible values after time t2 = 8.327 s.

The discontinuous appearance of the splitting and diffusion error is a result of modeling a circular cell on a
square grid lattice. Membrane grid points will have neighboring grid points of varying compartments, depend-
ing on the circular membrane’s orientation to the square lattice direction. Therefore, the three-point numerical
differencing used in the diffusion error and splitting error calculations will be affected by the location on the
membrane. Despite the random appearance, the concentration and error profiles all have four-fold symmetry
(eight-fold mirror symmetry), as would be expected on a square grid.
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Fig. 11. Evolution of the time step dt for the Strang splitting error dominated system. The integration time step reaches a steady-state
value of 0.01026 s at time t2 = 8.327 s.
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The cumulative error for the Strang splitting dominant system is highest for the kinase K, as the total error
for both the active and inactive form reach values of 3.75 · 10�7 lM within the first 12 seconds of the simu-
lation (Fig. 10).

7. Discussion and final remarks

We have shown that the evolution of even the simplest reaction–diffusion systems likely to be encountered
in multi-dimensional systems biology simulations can be dominated by truncation error due to both reaction
and diffusion operators, as well as the truncation error due to the common second-order Strang’s method of
operator splitting. In multi-dimensional cell signaling simulations, truncation error due to Strang splitting can
entirely dominate the system evolution as demonstrated by our third example simulation.

We have presented a method of monitoring the truncation error due to Strang splitting and incorporating it
into an adaptive step size integration algorithm. While truncation error and global error monitoring and con-
trol of individual operators is a common field of study [27,28], time adaptive methods which incorporate
Strang splitting truncation error as an input to time step control have, to our knowledge, not been previously
evaluated.

Operator splitting and time splitting methods have found popularity in a wide variety of applications
including Bose–Einstein condensation [29], quantum statistical calculations [30], optical interactions in media
[31], and transport in porous media [32]. Moreover, Strang splitting is used extensively in the field of atmo-
spheric simulation. This lead Lanser and Verwer [1] to conjecture that splitting errors are kept within practical
bounds for typical problems encountered in the field. As we have shown, this statement cannot be made, in
general, for problems in multi-dimensional cell signal modeling. We suggest that the inherent compartmental
nature of cells is a significant contributor to the splitting error in modeling cells.

Unlike atmospheric problems, where the chemistry is reasonably smooth spatially (it is a function of tem-
perature, altitude, pressure, humidity, etc., all of which are continuous variables), cells contain clearly defined
compartments and borders, over which chemistry can discontinuously vary. While more complex models of
cell signaling may take into account such factors as temperature and pressure, which are indeed important
for a multitude of cell functionality, the inclusion of locality into even the simplest models of cell signaling
requires the presence of compartments and physical borders. Such structures create abrupt sources and sinks
within the model chemistry which substantially contribute to the splitting error.

As shown by Lanser and Verwer [1], a complete and general splitting error calculation for reaction–advec-
tion–diffusion problems is too cumbersome to be of much practical use. As such, they prescribe a number of
simplifications to make the calculation more manageable. Since we are not currently modeling advection, the
splitting expression is simplified considerably. While this simplification makes the calculation more feasible, it
is still at a significant time cost per step. In our simulations, we have only seen significant calculation time
advantages for problems where uniform distributions of reactants reduce the role played by diffusion. In such
situations the time step size can increase dramatically (as seen in the reaction error dominated and diffusion
error dominated examples), and significantly reduce the calculation time. For more common heterogeneous
problems, calculating the various truncation errors every N steps reduces the calculation cost of each by a fac-
tor of N, although this makes the method’s time adaptivity less robust. The time cost to calculate reaction and
diffusion errors using the methods presented in this paper are near negligible.

Currently the most common approach for modeling intracellular signaling networks is based on purely
kinetic reaction systems modeled using ODEs, such as Gepasi [33] and Genesis [34]. This is referred to as
the ‘‘well mixed model’’ as it assumes homogenous chemistry throughout the cell. Focus has also recently
extended to modeling transport phenomena requiring the use of spatially resolved stochastic approaches such
as MCell [35] and StochSim [36] as well as spatially resolved kinetic approaches like Virtual Cell [37] and Cell-
Sim [5]. The last of these approaches, or possibly even a hybrid of the last two methods, is the most suited for
utilization of the Strang splitting error monitoring method outlined in this paper.

Other adaptive methods for solving partial differential equations include adaptive mesh methods [38] and
multigrid methods [39], time adaptive splitting methods for quickly equilibrating diffusion [40], and in situ

adaptive tabulation [13], essentially a storage and retrieval system. The main benefit of our method is ease
of implementation into software packages that use fixed Cartesian grids. The method is independent of the



underlying reaction and diffusion integrators, and for already existing implementations of Strang splitting only
the splitting error calculation and the simple adaptive control method need to be added. However, we have
recently proposed methods to extend splitting error control to adaptive mesh refinement techniques, providing
adaptivity in space as well as time.

As a possible extension to this work, there are important intracellular advective processes such as active
transport along actin filaments which are interesting in that they can be entirely decoupled from diffusion
[41]. In other words, reactants undergoing such advection are not simultaneously diffusing. Adding an advec-
tion propagator to the Strang split calculation for such reactants introduces splitting error due to the coupling
of reaction and advection, while for such reactants diffusion no longer contributes to the splitting error. As
such, determining the significance of advection–reaction splitting error in reaction–diffusion/advection cell
models is one possible step for further investigation into the role of splitting error in spatiotemporal cell
modeling.
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